Stereoselective synthesis of (\mathbf{Z})- α-(alkoxycarbonyl)methylene β - and γ-lactones by palladium-catalysed oxidative carbonylation of alkynols

Bartolo G abriele, ${ }^{\text {a }} \mathbf{G}$ iuseppe Salerno, ${ }^{\text {a }}$ F rancesca De Pascali, ${ }^{\mathrm{a}} \mathrm{M}$ irco Costa ${ }^{\mathrm{b}}$ and G ian P aolo C hiusoli ${ }^{\text {b }}$

${ }^{\text {a }}$ D ipartimento di Chimica, Università della C alabria, 87030 A rcavacata di R ende, Cosenza, Italy
${ }^{\text {b }}$ Dipartimento di Chimica Organica e Industriale, U niversità di Parma, Viale delle Scienze, 43100 Parma, Italy
(Z) $\boldsymbol{\alpha}$-(A Ikoxycarbonyl)methylene β - and γ-lactones can be obtained in fair to excellent yields and with high catalytic efficiencies by $\mathrm{PdI}_{2} / \mathrm{KI}$-catalysed oxidative dialkoxycarbonylation of propynyl alcohols (α, α-dialkyl substituted, or α-monoalkyl substituted with a sufficiently bulky alkyl group) and but-3-yn-1ols, respectively. Reactions are carried out in alcoholic media under mild conditions ($70-80^{\circ} \mathrm{C}$ and 20 atm of a 3:1 mixture of carbon monoxide and air). Reaction pathways are discussed.

Introduction

Transition metal-catalysed carbonylation of alkynols is an attractive route to α-methylene lactone derivatives. The α methylene lactone unit occurs in some natural products, which show a wide spectrum of physiological activity. ${ }^{1}$ A palladiumcatalysed synthesis of α-methylene γ-lactones was achieved by additive monocarbonylation of but-3-yn-1-ols. ${ }^{2} \mathrm{M}$ ore recently, palladium-catalysed oxidative monocarbonylation of but-3-yn1 -ols to α-methoxymethylene γ-lactone derivatives was also reported, while catalytic oxidative dicarbonylation to α-(methoxycarbonyl)methylene γ-lactones was obtained only in the case of 4 -(trimethylsilyl)but-3-yn-1-ols. ${ }^{3} \beta$-L actones were not formed by analogous carbonylations of propynyl alcohols, however. ${ }^{4} \quad \alpha$-(Triorganosilyl)methylene β-lactones were obtained by rhodium-catalysed silylcarbonylation of alkynols. ${ }^{5}$
We now report the synthesis of (Z)- α-(alkoxycarbonyl)methylene β - and γ-lactones by palladium-catalysed oxidative dicarbonylation of propynyl alcohols (α-alkyl substituted) and but-3-yn-1-ols, respectively. A preliminary account, limited to α, α-disubstituted propynyl alcohols, was published recently. ${ }^{6}$

Results and discussion

Earlier we described a new and efficient method for the oxidative carbonylation of alk-1-ynes to maleic diesters. ${ }^{7}$ The reactions were carried out in alcoholic media at $25-60^{\circ} \mathrm{C}$ and 20 atm of a CO -air mixture (3:1) in the presence of catalytic amounts of $\mathrm{Pdl}_{2}+10 \mathrm{KI}$ [eqn. (1)].

If the method is applied to substituted propynyl alcohols (α, α-dialkyl substituted, or α-monoalkyl substituted with a sufficiently bulky alkyl group), β-lactone derivatives with (Z)- α (alkoxycarbonyl)methylene chains are formed as the main products, according to eqn. (2). The stereoselectivity observed

is in agreement with the syn character of the carbon monoxide insertion reaction. ${ }^{8,9}$
The main by-products are maleic diesters 3, acetylenic esters 4 (corresponding to oxidative monocarbonylation) and products $\mathbf{5}$ derived from ring opening of $\mathbf{2}$ by alcohol attack at C-4. The latter reaction is characteristic of the β-lactone unit. ${ }^{1 d}$ It has been ascertained that the isolated β-lactones $\mathbf{2}$ are slowly converted into 5 when heated in alcoholic media at $80^{\circ} \mathrm{C}$. For example, 2a was partly converted into 5 a (7%) when treated with methanol at $80^{\circ} \mathrm{C}$ for 6 h . Small amounts of products 6 (cyclic tautomeric form ${ }^{7}$ of 3), 7,8 and 9 were detected in the reaction mixtures deriving from $\mathbf{1 a}$ and $\mathbf{1 c}$. Compound $\mathbf{7}$ originates from etherification of the alcoholic function of $\mathbf{3}$ (a reaction which also occurs with simple propynyl alcohol), ${ }^{7}$ while 8 corresponds to ring opening of $\mathbf{2}$ by attack at $\mathrm{C}-4$ by the reaction with water. Formation of 9 implies a β-hydroxy elimination from the

Table 1 Reactions of α-substituted propynyl alcohols with CO -air (3:1) and MeOH at $80^{\circ} \mathrm{C}$, initial pressure 20 atm at $20^{\circ} \mathrm{C}$, $\mathrm{Pdl}{ }_{2}-\mathrm{KI}$ molar ratio 1:10, substrate conc./mol dm ${ }^{-3}$ (in M eOH): 0.22

Run	Substrate	Substrat- Substrate:catalyst	t/h	Conv'n $(\%)^{\text {a }}$	Yield of $\mathbf{2}$ $(\%)^{\text {a }}$	Total yield (\%)	Product:catalyst

${ }^{\text {a }}$ Based on starting propynyl alcohol, by GLC. ${ }^{\text {b }}$ Including 3a (10\%), 5a (1\%), 6a(3\%) and 7a (1\%). ${ }^{c}$ Including 3a (12\%), 5a (2\%) and 6a (3\%).
${ }^{d}$ R eaction carried out at $60^{\circ} \mathrm{C}$. ${ }^{e}$ Including $\mathbf{3 a}(6 \%)$ and $\mathbf{6 a}(2 \%) .{ }^{\mathrm{f}}$ Including $\mathbf{3 b}(6 \%), \mathbf{4 b}(1 \%)$ and $\mathbf{5 b}(3 \%)$. ${ }^{\mathrm{g}}$ Including $\mathbf{3 b}$ (6%), $\mathbf{4 b}(3 \%)$ and $\mathbf{5 b}$ (5%).
 (3\%). ${ }^{\text {k }}$ Including 3d (33\%) and 4d (4\%).

$7 \mathbf{a}, \mathbf{e}$

8 c

a $\mathrm{R}^{1}=\mathrm{R}^{2}=\mathrm{R}^{3}=\mathrm{Me}$
b $\mathrm{R}^{1}=\mathrm{Et}, \mathrm{R}^{2}=\mathrm{R}^{3}=\mathrm{Me}$
c $\mathrm{R}^{1}-\mathrm{R}^{2}=\left(\mathrm{CH}_{2}\right)_{5}, \mathrm{R}^{3}=\mathrm{Me}$
d $\mathrm{R}^{1}=\mathrm{H}, \mathrm{R}^{2}=\mathrm{CHEt}_{2}, \mathrm{R}^{3}=\mathrm{Me}$
e $\mathbf{R}^{1}=R^{2}=\mathbf{M e}, \mathrm{R}^{3}=\mathrm{Bu}$
initially formed (alkoxycarbonyl)vinylpalladium complex resulting from alkoxycarbonylation of 1 .

Table 1 reports the results obtained with different substituted propynyl alcohols at $80^{\circ} \mathrm{C}$ in methanol as the solvent, using substrate: catalyst ratios of 100-2000. The reaction took place even at $60^{\circ} \mathrm{C}$, although the reaction rate was decreased, as shown by comparison between run 2 and run 3 .

Reactions can also be effected using higher alcohols as the solvent. U nder conditions similar to those of run 1 , but using a substrate/Pd molar ratio $=100$, the reaction of 1 a in butan-1-0 proceeded more slowly, giving 75% conversion in 5 h , with 44% yield of $\mathbf{2 e}, 22 \%$ of $\mathbf{3 e}, 2 \%$ of $\mathbf{6 e}$ and 3% of $\mathbf{7 e}$.
A lthough the reactions were carried out in alcohols at $80^{\circ} \mathrm{C}$, selectivities for β-lactones $\mathbf{2}$ were rather good, ranging from 43 to 85%. Reaction times longer than those reported resulted in lower selectivities for $\mathbf{2}$, although the total yields were higher.

Substrate reactivity tends to be lower when steric hindrance exerted by alkyl substituents increases. For example, in the case
of $\mathbf{1 a}, 1420 \mathrm{~mol}$ of carbonylated products per mol of palladium used could be obtained after 6 h (run 2), while 700 and 620 mol of products per mol of catalyst were obtained using $\mathbf{1 b}$ (run 5) and $\mathbf{1 c}$ (run 7) after 6 and 8 h , respectively.
The presence of alkyl substituents α to the triple bond is essential in order to achieve good selectivities for β-lactones. Product distribution deriving from unsubstituted propynyl alcohol is similar to that of simple alkyl- or aryl-acetylenes, the corresponding maleic diester and its cyclic isomer being the main products of the reaction with no formation of the β lactone derivative. ${ }^{7}$ On the other hand, yields of β-lactones deriving from α-monoalkylsubstituted propynyl alcohols are very low if the alkyl group is not sterically demanding. Thus, but-3-yn-2-ol lf, when allowed to react in methanol for 2 h under the usual conditions (substrate: catalyst =2000), yielded only 2% of the corresponding β-lactone $2 f$ at 80% conversion. M aleic diester $\mathbf{3 f}(50 \%)$, its cyclic tautomer $\mathbf{6 f}(9 \%)$, the fumaric derivative $10 f(12 \%)$ and γ-lactone 11 (6%) accounted for the converted substrate [eqn. (3)].

Product $10 f$ derives from etherification of the alcoholic function of $3 f$ with double bond isomerization, while the presence of small amounts of 11f implies Z to E isomerization of a carbonylated species which must occur within a palladiumbonded intermediate, since Z to E isomerization of the maleic derivatives does not readily occur under our conditions. ${ }^{7}$
γ-Lactones with (Z)- α-(alkoxycarbonyl)methylene chains were obtained by $\mathrm{Pdl}_{2} / \mathrm{KI}$-catalysed oxidative dialkoxycarbonylation of but-3-yn-1-ols 12 [eqn. (4)].
Table 2 reports the results obtained with different butynols using methanol as the solvent, with a substrate:catalyst molar ratio of 500 . Reactions were carried out at 70 rather than $80^{\circ} \mathrm{C}$

Table 2 Reactions of but-3-yn-1-ols with CO -air (3:1) and MeOH at $70^{\circ} \mathrm{C}$, initial pressure 20 atm at $20^{\circ} \mathrm{C}, \mathrm{Pdl}_{2}-\mathrm{KI}$ molar ratio 1 : 10 , substrate- Pd molar ratio 1:500, substrate conc./mol dm ${ }^{-3}$ (in M eOH): 0.22

Run	Substrate	t / h	Conv'n $(\%)^{\mathbf{a}}$	Yield of $\mathbf{1 3}$ $(\%)^{\mathbf{a}}$	Total yield (\%)	Product:catalyst

${ }^{\text {a }}$ B ased on starting but-3-yn-1-ol, by GLC (unless otherwise noted). ${ }^{\text {b }}$ Including $\mathbf{1 4 g}$ (13%). ${ }^{\mathrm{c}}$ Including $\mathbf{1 4 h}(4 \%) .{ }^{\text {d }}$ Reaction carried out at $80^{\circ} \mathrm{C}$.
${ }^{\mathbf{e}}$ Including $\mathbf{1 5 i}(19 \%) .{ }^{\mathbf{f}}$ I solated yield. ${ }^{\mathbf{9}}$ Including 14k (62\%) and $\mathbf{1 6 k}$ (4\%).

12
g $\mathbf{R}^{4}=\mathbf{R}^{5}=\mathbf{R}^{6}=\mathbf{H}$
$R^{4} R^{5}=R^{6}=M e$
$\mathrm{R}^{6}=\mathrm{H}$
$=\left(\mathrm{CH}_{2}\right)_{3}(c i s)$

(4)

$14 \mathrm{~g}, \mathrm{~h}, \mathrm{k}$

15 i

16k
g $\mathrm{R}^{4}=\mathrm{R}^{5}=\mathrm{R}^{6}=\mathrm{H}, \mathrm{R}^{3}=\mathrm{Me}$
h $\mathrm{R}^{4}=\mathrm{R}^{5}=\mathrm{H}, \mathrm{R}^{3}=\mathrm{R}^{6}=\mathrm{Me}$
i $R^{3}=R^{4}=R^{5}=M e, R^{6}=H$
k $\mathrm{R}^{4}=\mathrm{H}, \mathrm{R}^{5}-\mathrm{R}^{6}=\left(\mathrm{CH}_{2}\right)_{3}$ (trans), $\mathrm{R}^{3}=\mathrm{Me}$
starting from the alcoholic solvent $\mathrm{R}^{\mathbf{3}} \mathrm{OH} ; 7,10$ in this case, two different directions of attack on the triple bond are possible (path a and b, respectively); (b) starting from the alcoholic function of the substrate ${ }^{8}$ (path c).

In the case of intermediate \mathbf{I}, intramolecular attack by the hydroxy group on the acylpalladium moiety would readily explain lactone formation, while intermolecular attack by $\mathrm{R}^{3} \mathrm{OH}$ would account for the maleic diester formation (Scheme 2). On the other hand, the acylpalladium moiety of the regioisomeric intermediate II can only undergo intermolecular attack by $\mathrm{R}^{3} \mathrm{OH}$ to give the maleic diester [eqn. (5)], the intra-

molecular attack by the hydroxy group being impossible for geometric reasons. Lactone formation, however, is compatible with path b as well, since in this case an intramolecular ester exchange reaction becomes possible with formation of intermediate III, from which the final ester lactone is obtained by $\mathrm{R}^{3} \mathrm{OH}$ attack on the acylpalladium bond [eqn. (6)]. Also, the

maleic diester could lactonize according to eqn. (7). As

depicted in Scheme 1, intermediate III can be formed directly by path c, without passing through path b.

Scheme 2
Which of these pathways is the main reaction route appears to be dependent on the nature of the starting alkynol.
In respect of propynyl alcohols, although path c would readily explain β-lactone formation, it does not explain the experimental result that β-lactones are formed as the main products only when α, α-dialkyl substitution (or monoalkyl substitution, with the alkyl group sufficiently bulky) is present on the triple bond. On the other hand, the isolated maleic diesters $\mathbf{3}$ are not converted into the corresponding β-lactones 2 under the reaction conditions, which means that an intramolecular ester exchange reaction is not at work. Consequently, β-lactones are not formed by path b, which is the route normally followed under our conditions by arylacetylenes and alkylacetylenes with no substituents α to the triple bond (including propynyl alcohol). ${ }^{7}$ Therefore, experimental results strongly suggest path a as the main reaction route. This is also supported by the formation of by-products 4, which necessarily derive from path a [eqn. (8), $R=C R^{1} R^{2} O H$].

The small amounts ($2-3 \%$) of products 6 are formed by the less favoured path b (Scheme 3). ${ }^{7}$

Inversion of the regiochemistry of insertion of the triple bond into the $\mathrm{Pd}-\mathrm{CO}_{2} \mathrm{R}^{3}$ bond when the triple bond is $\alpha . \alpha$ dialkyl substituted or α-monoalkyl substituted with a bulky
alkyl group is clearly caused by the steric effect exerted by the alkyl groups α to the triple bond, which favours the bonding between the alkoxycarbonyl group and the less congested terminal carbon. A similar effect was observed by N ogi and Tsuji in the PdCl_{2}-catalysed carbonylation of prop-2-yn-1-ol and 2-methylbut-3-yn-2-ol in methanol as the solvent. ${ }^{4 a}$ In the presence of geminal alkyl groups, as in 1a-c, ring formation at the acylpalladium intermediate level is favoured in respect to carbonyl esterification by the gem-dialkyl effect. ${ }^{11}$ This allows formation of β-lactones to a substantial extent even in the presence of an alcohol as the solvent. The lower β-lactone: maleate ratio obtained in the case of $1 \mathbf{1 d}$ is reasonable, since the gem-dialkyl effect is not at work when only one alkyl group α to the triple bond is present, and therefore the intermolecular attack by $\mathrm{R}^{3} \mathrm{OH}$ becomes more competitive in respect to the intramolecular attack by the hydroxy group.

A lkyl substitution α to the triple bond slows down the carbon monoxide insertion into the palladium-vinyl bond, so the vinylpalladium intermediate can undergo side reactions such as β-hydrogen elimination and/or HI -promoted allenic rearrangement. This explains the formation of by-products 4 [eqn. (8), $R=C R^{1} R^{2} O H$] and $9 c$ [eqn. (9), $\left.R^{1}-R^{2}=\left(\mathrm{CH}_{2}\right)_{5}, R^{3}=M e\right]$.

In the case of butynols $\mathbf{1 2 g}$ and $\mathbf{1 2 h}$, path a should not be at work, since there are no substituents α to the triple bond and, therefore, the initial addition of the alkoxycarbonyl group occurs on the internal carbon of the triple bond ultimately leading to maleic diesters $\mathbf{1 4 g}$ and $\mathbf{1 4 h}$ (path b). To ascertain whether the latter could be converted into γ-lactones $\mathbf{1 3 g}$ and 13h we followed their behaviour under the reaction conditions without noticing lactonization. Thus, γ-lactones $\mathbf{1 3 g}$ and $\mathbf{1 3 h}$ must be formed by path c . This pathway could be favoured in respect to path b, even in an alcoholic solvent, due to the formation of a particularly stable five-membered chelate alkoxypalladium complex IV. ${ }^{3}$

On the other hand, the small amounts of maleic diesters $\mathbf{1 4 g}$ and 14 h must be formed by path b , since the isolated γ -
lactones $\mathbf{1 3 g}$ and $\mathbf{1 3 h}$ are not converted into $\mathbf{1 4 g}$ and $\mathbf{1 4 h}$ under the described reaction conditions.
Path a is at work when the butynol is α, α-dialkyl substituted, as in 12i, as suggested by the formation as a by-product of the acetylenic ester $15 i$ [eqn. (8), $\mathrm{R}=\mathrm{CM} \mathrm{e}_{2} \mathrm{CH}_{2} \mathrm{OH}$]. Both path c and path a may account for γ-lactone formation in this case.

In conclusion, α-substituted propynyl alcohols and but-3-yn-1-ols can efficiently undergo, under mild conditions, oxidative dialkoxycarbonylation to (Z)- α-(alkoxycarbonyl)methylene β or γ-lactones respectively with good selectivity and high catalytic efficiency, in the presence of a catalytic system based on the $\mathrm{Pdl}_{4}{ }^{2-}$ anion.

Experimental

M ps were determined on a Reichert Thermovar melting point apparatus and are uncorrected. Elemental analyses were carried out with a Carlo Erba Elemental A nalyser M od. 1106. IR Spectra were recorded on a Perkin-Elmer Paragon 1000 PC FT-IR spectrometer. M ass spectra were obtained using an HP 5972A spectrometer at 70 eV ionizing voltage. ${ }^{1} \mathrm{H}$ NM R Spectra were taken on a Bruker AC300 spectrometer and run on CDCl_{3} solutions with $\mathrm{Me}_{4} \mathrm{Si}$ as internal standard. Chemical shifts and coupling constants (J) are given as δ values (ppm) and in Hz , respectively.

The reaction mixtures were analysed by $\mathrm{TLC}\left(\mathrm{SiO}_{2}\right.$ or $\left.\mathrm{Al}_{2} \mathrm{O}_{3}\right)$ or by GLC using capillary columns with polymethylsilicone $+5 \%$ phenylsilicone (HP-5) or TPA-modified polyethyleneglycol (HP-FFAP) as the stationary phase Quantitative determination of the products was carried out by GLC using the internal standard method. Products were separated by conventional extraction techniques, followed by chromatographic procedures on silica or allumina with suitable eluents. M erck silica gel 60 (60-230 mesh) and neutral allumina 90 (70-230 mesh) were used for column chromatography. A nalytical TLC plates and silica gel 60F 254 for PTLC were purchased from M erck.

Preparation of alkynols

A cetylenic alcohols 2-methylbut-3-yn-2-ol 1a, 3-methylpent-1-yn-3-ol 1b, 1-ethynylcyclohexanol $\mathbf{1 c}$, but-3-yn-2-ol $\mathbf{1 f}$, but-3-yn-1-ol 12g and pent-4-yn-2-ol 12h are commercial products (Aldrich, Fluka). 2,2-D imethylbut-3-yn-1-ol $\quad 12$ i 12 cis-2ethynylcyclopentanol 12j ${ }^{\text {2a }}$ and trans-2-ethynylcyclopentanol $\mathbf{1 2 k}{ }^{2 a}$ were prepared according to literature procedures.

4-E thy 1 hex-1-yn-3-ol 1d

This alkynol, prepared by ethynylation ${ }^{13}$ of 2-ethylbutanal, which is commercially available, was a colourless liquid, bp 72$73{ }^{\circ} \mathrm{C} / 15 \mathrm{mmH}$ g (Found: C, 76.3; H, 11.0. $\mathrm{C}_{8} \mathrm{H}_{14} \mathrm{O}$ requires C , 76.2; H 11.1\%); $v_{\text {max }}($ film $) / \mathrm{cm}^{-1} 3380 \mathrm{~m}$ br, 3309s, 2963s, 2934s, 2877s, 2113w, 1462m, 1381m, 1330w, 1277w, 1247w, 1129w, 1024 m and $890 \mathrm{w} ; \delta_{\mathrm{H}} 0.93(3 \mathrm{H}, \mathrm{t}, \mathrm{J} 7.25, \mathrm{Me}$), $0.94(3 \mathrm{H}, \mathrm{t}, \mathrm{J}$ 7.32, Me), 1.30-1.68 ($5 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2} \mathrm{CHCH}_{2}$), 2.45 ($1 \mathrm{H}, \mathrm{d}, \mathrm{J} 2.24$, $\mathrm{C} \equiv \mathrm{CH})$ and $4.42(1 \mathrm{H}, \mathrm{dd}, \mathrm{J} 2.24$ and $4.37, \mathrm{CHOH}) ; \mathrm{m} / \mathrm{z} 126$ (M^{+}, absent), 125 (<0.5\%), 111 (4), 98 (6), 97 (16), 93 (8), 84 (27), 83 (22), 79 (8), 77 (12), 71 (41), 70 (39), 69 (20), 67 (8), 65 (4), 57 (16), 56 (51), 55 (100) and 53 (22).

G eneral procedure for catalytic oxidative carbonylation of alkynols

The carbonylations were carried out in a $300 \mathrm{~cm}^{3}$ stainless steel autoclave (Parr) with magnetic stirring. In a typical experiment the autoclave was charged in the presence of air with $\mathrm{Pdl}_{2}, \mathrm{~K} \mathrm{I}$ (10 mol per mol of palladium) and the appropriate alkynol dissolved in MeOH or BuOH . The autoclave was pressurized with CO (15 atm) and air (up to 20 atm of total pressure) and heated and stirred for the required time. Care must be taken to fill the autoclave to levels that allow the presence of a sufficient amount of oxygen necessary for the reoxidation cycle. R eaction
times, temperature, substrate concentration and substrate to catalyst ratios used are indicated in Tables 1 and 2.

Separation of products

Compounds $\mathbf{2 a}, \mathbf{3 a}+\mathbf{6 a}$ and $\mathbf{5 a}$ were eluted in this order by chromatography through a SiO_{2} column, using a concentration gradient of hexane-ethyl acetate from $90: 10$ to $0: 100$. Products 3 a and 6 a were subsequently separated by column chromatography $\left(\mathrm{SiO}_{2}\right)$ using a mixture of light petroleum (bp 40$70^{\circ} \mathrm{C}$)-acetone ($95: 5$) as eluent. Pure compound 7 a was obtained from an experiment similar to run 2 but carried out for 15 h . C hromatographic separation was effected on the crude reaction mixture on a SiO_{2} column (hexane-ethyl acetate from $90: 10$ to $0: 100$; order of elution: 7a, 2a, 3a $+\mathbf{6 a}, \mathbf{5 a}$). Products $\mathbf{7 e}, \mathbf{2 e}, \mathbf{6 e}$ (in a mixture with $\mathbf{2 e}$), $\mathbf{3 e}$ and $\mathbf{5 e}$ were eluted in this order by chromatography through a SiO_{2} column, using a concentration gradient of hexane-acetone from 98:2 to 0:100. Product $\mathbf{6 e}$ was subsequently separated from $\mathbf{2 e}$ by PTLC $\left(\mathrm{SiO}_{2}\right)$ using hexane-acetone (90:10) as eluent. Products 4b, 2b, 3b and $\mathbf{5 b}$; $9 \mathrm{c}, \mathbf{4 c}, \mathbf{2 c}, \mathbf{3 c}, \mathbf{5 c}$ and $\mathbf{8 c}$; 4d, 2d and 3d; 10f, 11f, 2f, $\mathbf{3 f}$ and $\mathbf{6 f}$ (in a mixture with $\mathbf{3 f}$) were eluted in the order as above using a concentration gradient of hexane-ethyl acetate from $90: 10$ to $0: 100$. Product $6 f$ was identified by mass, IR and ${ }^{1} \mathrm{H}$ NM R spectroscopy directly in the mixture with $\mathbf{3 f}$.
Compounds $\mathbf{1 3 g}$ and $\mathbf{1 4 g}$ were eluted in this order by chromatography through a SiO_{2} column, using a concentration gradient of chloroform-acetone from 100:0 to 98:2. Products 13h and 14h were separated in a similar way. Product 13 j was purified through a SiO_{2} column, using chloroform as eluent. Products $\mathbf{1 6 k}, \mathbf{1 3 k}$ and $\mathbf{1 4 k}$ and $\mathbf{1 5 i}$ and $\mathbf{1 3 i}$ were eluted in the order as above using chloroform as eluent.

Characterization of products

Identification of known products $7 \mathbf{a}^{\mathbf{4 a}}$ and $\mathbf{9} \mathbf{c}^{14}$ was carried out by comparison with literature data. N ew compounds were identified by elemental analysis and IR, ${ }^{1} \mathrm{H} N \mathrm{M}$ R and M S data.

4,4-D imethyl-3-[(Z)-(methoxycarbonyl)methylene] 1-oxacy-clobutan-2-one 2a. White solid, $\mathrm{mp} 79-80^{\circ} \mathrm{C}$ (F ound: $\mathrm{C}, 56.7$; $\mathrm{H}, 6.0 . \mathrm{C}_{8} \mathrm{H}_{10} \mathrm{O}_{4}$ requires $\left.\mathrm{C}, 56.5 ; \mathrm{H}, 5.9 \%\right) ; v_{\max }(\mathrm{K} \mathrm{Br}) / \mathrm{cm}^{-1}$ 3078 vw , 2996vw, 1808s, 1727s, 1690s, 1441w, 1384vw, 1370vw, $1291 \mathrm{~s}, 1229 \mathrm{vw}, 1205 \mathrm{~m}, 1082 \mathrm{w}, 1038 \mathrm{~m}, 921 \mathrm{w}, 885 \mathrm{vw}, 820 \mathrm{w}$ and 786 m ; $\delta_{\mathrm{H}} 1.67\left(6 \mathrm{H}, \mathrm{s}, 2 \mathrm{M} \mathrm{e}\right.$), 3.85 ($3 \mathrm{H}, \mathrm{s}, \mathrm{CO}_{2} \mathrm{M} \mathrm{e}$) and 5.92 (1 H, s, =CH); m/z 170 (${ }^{+}$, <0.5\%), 155 (28), 141 (3), 126 (51), 125 (61), 113 (100), 112 (21), 111 (92), 98 (7), 95 (13), 85 (13), 83 (39), 82 (31), 73 (16), 69 (15), 67 (98), 65 (21), 59 (66) and 53 (80).

4-E thyl-3-[(Z)-(methoxycarbonyl)methylene]-4-methyl-1-oxacyclobutan-2-one 2b. White solid, $\mathrm{mp} 34-35^{\circ} \mathrm{C}$ (Found: C, 58.6; $\mathrm{H}, 6.6, \mathrm{C}_{9} \mathrm{H}_{12} \mathrm{O}_{4}$ requires $\mathrm{C}, 58.7 ; \mathrm{H}, 6.5 \%$); $v_{\max }($ film $) / \mathrm{cm}^{-1}$ 2978m, 2955m, 2885w, 1817s, 1733s, 1694m, 1461m, 1437m, 1382w, 1338s, 1287s, 1162s, 1081s, 1018m, 901w, 882w, 823m and 785 m ; $\delta_{\mathrm{H}} 1.04(3 \mathrm{H}, \mathrm{t}, \mathrm{J} 7.48, \mathrm{M} \mathrm{e}), 1.64(3 \mathrm{H}, \mathrm{s}, \mathrm{M} \mathrm{e}), 1.95$ (2 $\left.\mathrm{H}, \mathrm{q}, \mathrm{J} 7.48, \mathrm{CH}_{2}\right), 3.84\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CO}_{2} \mathrm{M} \mathrm{e}\right)$ and $5.97(1 \mathrm{H}, \mathrm{s}, \mathrm{CH})$; $\mathrm{m} / \mathrm{z} 184\left(\mathrm{M}^{+},<0.5 \%\right), 169(2), 156$ (9), 155 (100), 141 (2), 125 (65), 113 (99), 97 (7), 85 (5), 82 (11), 81 (28), 79 (16), 77 (5), 69 (6), 59 (18), 57 (16) and 53 (36).

3-[(Z)-(M ethoxycarbonyl)methylene]-1-oxaspiro[3,5]nonan-2one 2c. White solid, $\mathrm{mp} 71-72{ }^{\circ} \mathrm{C}$ (Found: C, 63.0; H, 6.6. $\mathrm{C}_{11} \mathrm{H}_{14} \mathrm{O}_{4}$ requires C, 62.9; $\mathrm{H}, 6.7 \%$); $v_{\text {max }}(\mathrm{K} \mathrm{Br}) / \mathrm{cm}^{-1} 2940 \mathrm{~m}$, 2861w, 1807s, 1725s, 1690m, 1447m, 1294m, 1170w, 1033m, 903 m and $790 \mathrm{~m} ; \delta_{\mathrm{H}} 1.37-2.07\left(10 \mathrm{H}, \mathrm{m}, 5 \mathrm{CH}_{2}\right), 3.85(3 \mathrm{H}, \mathrm{s}$, $\mathrm{CO}_{2} \mathrm{M} \mathrm{e}$) and $6.00(1 \mathrm{H}, \mathrm{s},=\mathrm{CH}) ; \mathrm{m} / \mathrm{z} 210\left(\mathrm{M}^{+}, 1 \%\right), 195(1), 178$ (13) 168 (18), 165 (9), 155 (22), 154 (58), 151 (50), 150 (42), 140 (27), 137 (23), 126 (22), 123 (53), 122 (33), 113 (29), 107 (19), 105 (25), 99 (20), 95 (37), 94 (23), 91 (31), 82 (34), 81 (28), 80 (22), 79 (47), 77 (24), 69 (39), 67 (35), 65 (19), 59 (39), 55 (100) and 53 (79).
3-[(Z)-M ethoxycarbonyl)methylene]-4-(pentan-3-yl)-1-oxa-cyclobutan-2-one 2d. Colourless oil (Found: C, 62.5; H, 7.6. $\mathrm{C}_{11} \mathrm{H}_{16} \mathrm{O}_{4}$ requires $\mathrm{C}, 62.3 ; \mathrm{H}, 7.5 \%$); $v_{\text {max }}$ (film) $/ \mathrm{cm}^{-1} 2965 \mathrm{~m}$,

2940w, 2879w, 1825s, 1734s, 1695w, 1461w, 1437w, 1337m $1287 \mathrm{~m}, 1213 \mathrm{~m}, 1118 \mathrm{~m}, 1069 \mathrm{~m}$ and $870 \mathrm{~m} ; \delta_{\mathrm{H}} 0.95(3 \mathrm{H}, \mathrm{t}, \mathrm{J} 7.48$, $\mathrm{M} \mathrm{e}), 0.96\left(3 \mathrm{H}, \mathrm{t}, \mathrm{J} 7.48, \mathrm{Me}\right.$), $1.35-1.59\left(4 \mathrm{H}, \mathrm{m}, 2 \mathrm{CH}_{2}\right), 1.68-$ $1.80\left(1 \mathrm{H}, \mathrm{m}, \mathrm{CHEt}_{2}\right), 3.85\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CO}_{2} \mathrm{M} \mathrm{e}\right.$), $4.94(1 \mathrm{H}, \mathrm{dd}, \mathrm{J}$ 6.76 and $1.64, \mathrm{CHOC}=0$) and $6.04(1 \mathrm{H}, \mathrm{d}, \mathrm{J} 1.64,=\mathrm{CH}) ; \mathrm{m} / \mathrm{z}$ 212 (${ }^{+}$, < 0.5%), 183 (2), 153 (2), 142 (52), 141 (10), 110 (100), 95 (2), 82 (9), 71 (11), 69 (5), 59 (13), 55 (12) and 53 (16).

3-[(Z)-(B utoxycarbonyl)methylene]-4,4-dimethyl-1-oxacyclo-butan-2-one 2e. Colourless oil (Found: C, 62.4; H, 7.4. $\mathrm{C}_{12} \mathrm{H}_{16} \mathrm{O}_{4}$ requires C, 62.3; H, 7.5\%); $v_{\text {max }}($ film $) / \mathrm{cm}^{-1} 2963 \mathrm{~m}, ~ 2935 \mathrm{~m}$, 2875w, 1821s, 1730s, 1693m, 1461w, 1387w, 1374w, 1331m, 1274s, 1173s, 1066s, 1026m, 1015m, 908w, 819w, 793m and 719w; $\delta_{\mathrm{H}} 0.95(3 \mathrm{H}, \mathrm{t}, \mathrm{J} 7.36, \mathrm{Me}), 1.35-1.52\left(2 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2}\right)$, 1.58-1.75 ($2 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2}$), $1.67(6 \mathrm{H}, \mathrm{s}, 2 \mathrm{M} \mathrm{e}), 4.23(2 \mathrm{H}, \mathrm{t}, \mathrm{J} 6.69$ $\left.\mathrm{CH}_{2} \mathrm{OC}=0\right)$ and $5.93(1 \mathrm{H}, \mathrm{s},=\mathrm{CH}) ; \mathrm{m} / \mathrm{z} 212\left(\mathrm{M}^{+}\right.$, absent), 197 (<0.5\%), 157 (6), 155 (3), 141 (19), 140 (25), 139 (100), 126 (2), 113 (8), 112 (53), 111 (80), 99 (8), 97 (13), 83 (51), 69 (10), 67 (34), 59 (14), 57 (52), 56 (21), 55 (19) and 53 (24).

3-[(Z)-(M ethoxycarbonyl)methylene]4-methyl-1-oxacyclo-butan-2-one 2f. Colourless oil (Found: C, 53.6; $\mathrm{H}, 5.2 . \mathrm{C}_{7} \mathrm{H}_{8} \mathrm{O}_{4}$ requires C, 53.8; $\mathrm{H}, 5.1 \%$); $v_{\text {max }}($ film $) / \mathrm{cm}^{-1} 2956 \mathrm{w}, 2918 \mathrm{w}, 1822 \mathrm{~s}$, 1733s, $1696 \mathrm{w}, 1438 \mathrm{~m}, 1337 \mathrm{~m}, 1291 \mathrm{~m}, 1260 \mathrm{~m}, 1218 \mathrm{~m}, 1135 \mathrm{~m}$, $1111 \mathrm{~m}, 1077 \mathrm{~m}, 1019 \mathrm{~m}, 909 \mathrm{~s}$, 831w and 732s; $\delta_{\mathrm{H}} 1.63$ (3 H , d, J $6.33, \mathrm{Me}), 3.85\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CO}_{2} \mathrm{M} \mathrm{e}\right.$), $5.13(1 \mathrm{H}, \mathrm{qd}, \mathrm{J} 6.33$ and 1.62 , CHOC=0) and $6.00(1 \mathrm{H}, \mathrm{d}, \mathrm{J} 1.62,=\mathrm{CH})$; m/z $156\left(\mathrm{M}^{+}, 60 \%\right)$, 141 (1), 128 (6), 125 (29), 124 (100), 113 (28), 97 (33), 96 (11), 85 (14), 82 (42), 69 (11), 59 (18), 55 (41), 54 (12) and 53 (19).

D imethyl (Z)-2-(1-hydroxy-1-methylethyl)but-2-enedioate 3a. Colourless oil (Found: C, 53.5; H, 7.0. $\mathrm{C}_{9} \mathrm{H}_{14} \mathrm{O}_{5}$ requires C, 53.5; H, 6.9%); $v_{\text {max }}($ film $) / \mathrm{cm}^{-1} 3492 \mathrm{~m}$ br, 2983m, 2955m, 1725s, $1649 \mathrm{~m}, 1437 \mathrm{~s}, 1347 \mathrm{~s}, 1260 \mathrm{~s}, 1196 \mathrm{~s}, 1170 \mathrm{~s}, 1046 \mathrm{~m}, 1020 \mathrm{~m}, 970 \mathrm{w}$, $908 \mathrm{~m}, 889 \mathrm{w}$ and 823 w ; $\delta_{\mathrm{H}} 1.46(6 \mathrm{H}, \mathrm{s}, 2 \mathrm{Me}), 3.73(3 \mathrm{H}, \mathrm{s}$, $\mathrm{CO}_{2} \mathrm{M} \mathrm{e}$), $3.85\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CO}_{2} \mathrm{M} \mathrm{e}\right)$ and $6.11(1 \mathrm{H}, \mathrm{s},=\mathrm{CH}) ; \mathrm{m} / \mathrm{z} 202$ (M^{+}, absent), 187 (14\%) 171 (6), 159 (7), 155 (100), 153 (16), 143 (3), 139 (5), 127 (53), 114 (13), 113 (65), 111 (11), 99 (5), 85 (12), 83 (6), 82 (8), 69 (8), 59 (41) and 53 (15).

Dimethyl (Z)-2-(1-hydroxy-1-methylpropyl)but-2-enedioate 3b. Colourless oil (Found: $\mathrm{C}, 55.5 ; \mathrm{H}, 7.4 . \mathrm{C}_{10} \mathrm{H}_{16} \mathrm{O}_{5}$ requires C , 55.6; H, 7.4\%); $v_{\max }($ film $) / \mathrm{cm}^{-1} 3509 \mathrm{~m}$ br, 2978m, 2954m, 2884w, 1728s, 1647m, 1456m, 1437m, 1348m, 1259s, 1202s, 1168s, 1063w, 1036m, 1014m, 928w, 910w, 887w and 736w; δ_{H} 0.93 ($3 \mathrm{H}, \mathrm{t}, \mathrm{J} 7.43, \mathrm{M} \mathrm{e}$), $1.42(3 \mathrm{H}, \mathrm{s}, \mathrm{M} \mathrm{e}), 1.65-1.78(2 \mathrm{H}, \mathrm{m}$, $\left.\mathrm{CH}_{2}\right), 3.74\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CO}_{2} \mathrm{Me}\right.$), $3.85\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CO}_{2} \mathrm{Me}\right.$) and 6.08 (1 H, s, =CH ; m/z 216 (M ${ }^{+}$, absent), 201 (1%), 187 (10), 169 (10), 167 (7), 156 (9), 155 (100), 141 (15), 127 (6), 125 (6), 124 (4), 114 (5), 113 (47), 97 (2), 85 (6), 82 (5), 73 (7), 69 (5), 59 (9), 57 (11), 55 (8) and 53 (11).

Dimethyl (Z)-2-(1-hydroxycyclohexyl)but-2-enedioate 3c. White solid, mp 59-60 ${ }^{\circ} \mathrm{C}$ (Found: C, 59.4; $\mathrm{H}, 7.4 . \mathrm{C}_{12} \mathrm{H}_{18} \mathrm{O}_{5}$ requires C, $59.5 ; \mathrm{H}, 7.4 \%)$; $v_{\text {max }}(\mathrm{K} \mathrm{Br}) / \mathrm{cm}^{-1} 3496 \mathrm{~m}$ br, 2937 m , 2860w, 1727s, 1645w, 1436m, 1346m, 1258s, 1200m, 1166s, 989 w and 882 w ; $\delta_{\mathrm{H}} 1.09-1.86\left(10 \mathrm{H}, \mathrm{m}, 5 \mathrm{CH}_{2}\right), 3.73\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CO}_{2} \mathrm{M} \mathrm{e}\right)$, $3.85\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CO}_{2} \mathrm{M} \mathrm{e}\right)$ and $6.12(1 \mathrm{H}, \mathrm{s},=\mathrm{CH}) ; \mathrm{m} / \mathrm{z} 242\left(\mathrm{M}^{+}\right.$, absent), 211 (9\%), 210 (54), 193 (21), 183 (37), 182 (48), 178 (55), 167 (40), 155 (25), 154 (93), 151 (62), 150 (56), 140 (51), 139 (19), 136 (19), 126 (24), 123 (41), 122 (30), 113 (31), 105 (21), 98 (21), 95 (32), 94 (21), 82 (29), 81 (49), 79 (21), 69 (38), 68 (25), 67 (22), 59 (46), 55 (100) and 53 (57).

Dimethyl (Z)-2-(2-ethyl-1-hydroxybutyl)but-2-enedioate 3d. Colourless oil (Found: C, 58.9; H, 8.1. $\mathrm{C}_{12} \mathrm{H}_{20} \mathrm{O}_{5}$ requires C $59.0 ; \mathrm{H}, 8.2 \%$); $v_{\max }(\mathrm{film}) / \mathrm{cm}^{-1} 3510 \mathrm{~m}$ br, 2961s, 2935 m , $2877 \mathrm{~m}, 1728 \mathrm{~s}, 1651 \mathrm{~m}, 1461 \mathrm{~m}, 1437 \mathrm{~m}, 1347 \mathrm{~m}, 1265 \mathrm{~s}$, 1201s, 1169s, 1086w, 1052w, 1019m and 974w; $\delta_{\mathrm{H}} 0.88$ (3 H , t, J 7.35, Me), $0.91(3 \mathrm{H}, \mathrm{t}, \mathrm{J} 7.27, \mathrm{Me}), 1.17-1.66\left(5 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2} \mathrm{CHCH}_{2}\right)$, $3.74\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CO}_{2} \mathrm{M} \mathrm{e}\right), 3.83\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CO}_{2} \mathrm{M} \mathrm{e}\right.$), $4.49(1 \mathrm{H}, \mathrm{dd}, \mathrm{J} 3.84$ and $1.67, \mathrm{CHOH})$ and $6.13(1 \mathrm{H}, \mathrm{d}, \mathrm{J} 1.67,=\mathrm{CH}) ; \mathrm{m} / \mathrm{z} 244(\mathrm{M}+$, absent), 213 (1%), 174 (4), 173 (4), 143 (9), 142 (100), 141 (21), 140 (14), 113 (7), 110 (50), 99 (6), 82 (7), 71 (8), 69 (4), 59 (9), 55 (10) and 53 (8).

Dibutyl (Z)-2-(1-hydroxy-1-methylethyl)but-2-enedioate 3e.

Colourless oil (Found: $\mathrm{C}, 62.8$; $\mathrm{H}, 9.2 . \mathrm{C}_{15} \mathrm{H}_{26} \mathrm{O}_{5}$ requires C , 62.9; H, 9.1\%); $v_{\text {max }}($ film $) / \mathrm{cm}^{-1} 3496 \mathrm{~m}$ br, 2961s, 2935m, 2874w, 1720s, $1646 \mathrm{~m}, 1465 \mathrm{~m}, 1391 \mathrm{~m}, 1339 \mathrm{~m}, 1253 \mathrm{~s}, 1173 \mathrm{~s}$, $1062 \mathrm{~m}, 1042 \mathrm{w}, 962 \mathrm{w}, 890 \mathrm{w}$ and $735 \mathrm{~m} ; \delta_{\mathrm{H}} 0.93$ ($3 \mathrm{H}, \mathrm{t}, \mathrm{J} 7.30$, Me), $0.95\left(3 \mathrm{H}, \mathrm{t}, \mathrm{J} 7.31, \mathrm{Me}\right.$), 1.33-1.53(4 H , m, $2 \mathrm{CH}_{2}$), 1.47 (6 H, s, 2 M e), 1.53-1.76 ($4 \mathrm{H}, \mathrm{m}, 2 \mathrm{CH}_{2}$), $4.12(2 \mathrm{H}, \mathrm{t}, \mathrm{J} 6.70$, $\left.\mathrm{CH}_{2} \mathrm{OC}=0\right), 4.25\left(2 \mathrm{H}, \mathrm{t}, \mathrm{J} 6.67, \mathrm{CH}_{2} \mathrm{OC}=0\right)$ and $6.10(1 \mathrm{H}, \mathrm{s}$ $=C H$); m/z 286 (M ${ }^{+}$, absent), 271 (8\%), 243 (1), 229 (5), 213 (7), 197 (10), 169 (6), 157 (13), 141 (100), 139 (49), 124 (5), 113 (55), 111 (26), 99 (14), 83 (15), 69 (7), 59 (22), 57 (57) and 55 (10).
Dimethyl (Z)-2-(1-hydroxyethyl)but-2-enedioate 3f. Colourless oil (Found: C, 51.1; $\mathrm{H}, 6.5 . \mathrm{C}_{8} \mathrm{H}_{12} \mathrm{O}_{5}$ requires $\mathrm{C}, 51.1 ; \mathrm{H}$, 6.4%); $v_{\text {max }}($ film $) / \mathrm{cm}^{-1} 3441 \mathrm{~m}$ br, 2983w, 2956m, 1726s, 1654 m , $1438 \mathrm{~m}, 1358 \mathrm{~m}, 1270 \mathrm{~s}, 1203 \mathrm{~s}, 1172 \mathrm{~s}$, $1080 \mathrm{~m}, 1007 \mathrm{w}, 925 \mathrm{w}$ and $890 \mathrm{w} ; \delta_{\mathrm{H}} 1.39\left(3 \mathrm{H}, \mathrm{d}, \mathrm{J} 6.57, \mathrm{M} \mathrm{e}\right.$), 3.75 ($3 \mathrm{H}, \mathrm{s}, \mathrm{CO}_{2} \mathrm{Me}$ e), 3.85 (3 $\mathrm{H}, \mathrm{s}, \mathrm{CO}_{2} \mathrm{Me}$), $4.59(1 \mathrm{H}, \mathrm{qd}, \mathrm{J} 6.57$ and $1.50, \mathrm{CHOH})$ and 6.12 ($1 \mathrm{H}, \mathrm{d}, \mathrm{J}$ 1.50, $=\mathrm{CH}$); m/z 188 (M^{+}, absent), 173 (19\%), 157 (17), 145 (22), 141 (78), 129 (12), 124 (19), 114 (19), 113 (100), 97 (32), 85 (24), 82 (19), 69 (19), 59 (40), 55 (22) and 53 (40).
M ethyl 4-hydroxy-4-methylhex-2-ynoate 4b. Colourless oil (Found: C, 61.5; H, 7.8. $\mathrm{C}_{8} \mathrm{H}_{12} \mathrm{O}_{3}$ requires $\mathrm{C}, 61.5 ; \mathrm{H}, 7.7 \%$); $v_{\text {max }}($ film $) / \mathrm{cm}^{-1} 3421 \mathrm{~m}$ br, 2977m, 2941m, 2884w, 2236m, 1718s, 1457m, 1437m, 1373w, 1256s, 1164m, 1137w, 1035m, 994w, 926 m and $753 \mathrm{~m} ; \delta_{\mathrm{H}} 1.06$ ($3 \mathrm{H}, \mathrm{t}, \mathrm{J} 7.46, \mathrm{M} \mathrm{e}$), $1.53(3 \mathrm{H}, \mathrm{s}$, Me), 1.70-1.81 ($2 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2}$) and $3.79\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CO}_{2} \mathrm{Me}\right) ; \mathrm{m} / \mathrm{z}$ 156 (M^{+}, absent), 155 (<0.5\%), 141 (12), 128 (7), 127 (100), 125 (9), 113 (8), 109 (12), 96 (11), 95 (61), 85 (24), 81 (8), 71 (6), 69 (9), 59 (4), 57 (8), 55 (7) and 53 (84).

M ethyl 3-(1-hydroxycyclohexyl)prop-2-ynoate 4c. White solid, mp 39-40 ${ }^{\circ} \mathrm{C}$ (Found: C, 66.0; H, 7.7. $\mathrm{C}_{10} \mathrm{H}_{14} \mathrm{O}_{3}$ requires C, 65.9; H, 7.7\%); $v_{\text {max }}($ film $) / \mathrm{cm}^{-1} 3265 \mathrm{~m}$ br, 2937m, 2861w, $2237 \mathrm{~m}, 1713 \mathrm{~s}, 1451 \mathrm{~m}, 1435 \mathrm{~m}, 1285 \mathrm{~m}, 1242 \mathrm{~s}, 1074 \mathrm{~m}, 1042 \mathrm{~m}$, 944 w and 753 w ; $\delta_{\mathrm{H}} 1.20-2.03\left(10 \mathrm{H}, \mathrm{m}, 5 \mathrm{CH}_{2}\right)$ and $3.78(3 \mathrm{H}, \mathrm{s}$, $\mathrm{CO}_{2} \mathrm{M} \mathrm{e}$); m/z 182 (${ }^{+}$, <0.5\%), 167 (2), 151 (27), 150 (46), 139 (44), 135 (18), 126 (30), 122 (57), 121 (49), 111 (57), 108 (26), 107 (96), 98 (38), 95 (77), 94 (59), 82 (24), 81 (41), 80 (34), 79 (76), 77 (22), 69 (36), 67 (37), 66 (32), 59 (17), 55 (87) and 53 (100).

M ethyl 5-ethyl-4-hydroxyhept-2-ynoate 4d. Colourless oil (Found: C, 65.1; H, 8.8. $\mathrm{C}_{10} \mathrm{H}_{16} \mathrm{O}_{3}$ requires $\mathrm{C}, 65.2 ; \mathrm{H}, 8.7 \%$); $v_{\text {max }}$ (film)/cm ${ }^{-1} 3426 \mathrm{~m}$ br, 2963s, 2935s, 2878m, 2235m, 1720s, 1461m, 1436m, 1383w, 1255s, 1132w, 1053m, 1025m, 968w, 907 w and $753 \mathrm{~m} ; \delta_{\mathrm{H}} 0.93(3 \mathrm{H}, \mathrm{tJ} 7.32, \mathrm{M} \mathrm{e}), 0.94(3 \mathrm{H}, \mathrm{t}, \mathrm{J} 7.32$, Me), $1.30-1.68\left(5 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2} \mathrm{CHCH}_{2}\right), 3.79\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CO}_{2} \mathrm{M} \mathrm{e}\right.$) and $4.54(1 \mathrm{H}, \mathrm{d}, \mathrm{J} 4.47, \mathrm{CHOH}) ; \mathrm{m} / \mathrm{z} 184$ (${ }^{+}$, absent) 166 (<0.5\%), 153 (4), 124 (1), 115 (6), 114 (100), 110 (2), 99 (5), 85 (3), 82 (14), 81 (7), 71 (6), 68 (5), 67 (4), 59 (3), 55 (12) and 53 (15).

4-M ethyl hydrogen (Z)-2-(1-methoxy-1-methylethyl)but-2enedioate 5a. Colourless oil (Found: C, 53.4; H, 7.0. $\mathrm{C}_{9} \mathrm{H}_{14} \mathrm{O}_{5}$ requires C, 53.5, H, 6.9\%); $v_{\text {max }}$ (film)/cm ${ }^{-1} 3600-2800 \mathrm{~m}$ br, $2983 \mathrm{~m}, 2950 \mathrm{~m}, 1725 \mathrm{~s}, 1642 \mathrm{~m}, 1435 \mathrm{~m}, 1380 \mathrm{~m}, 1330 \mathrm{~m}, 1173 \mathrm{~s}$ and $1069 \mathrm{~m} ; \delta_{\mathrm{H}} 1.42(6 \mathrm{H}, \mathrm{s}, 2 \mathrm{M} \mathrm{e}$), 3.23 ($3 \mathrm{H}, \mathrm{s}, \mathrm{OM}$ e), 3.83 (3 $\mathrm{H}, \mathrm{s}, \mathrm{CO}_{2} \mathrm{Me}$) and $6.02(1 \mathrm{H}, \mathrm{s},=\mathrm{CH}) ; \mathrm{m} / \mathrm{z} 202\left(\mathrm{M}^{+}\right.$, absent), 155 (78\%), 140 (8), 112 (8), 111 (7), 100 (4), 83 (100), 73 (10), 67 (11), 59 (7) and 53 (10).

4-M ethyl hydrogen (Z)-2-(1-methoxy-1-methylpropyl)but-2enedioate 5b. Colourless oil (Found: C, 55.5; H, 7.3. $\mathrm{C}_{10} \mathrm{H}_{16} \mathrm{O}_{5}$ requires C, 55.6; H, 7.4\%); $v_{\text {max }}($ film $) / \mathrm{cm}^{-1} 3600-2800 \mathrm{~m}$ br, 2926s, 1732s, 1646m, 1462m, 1438m, 1379m, 1329m, 1260m, $1176 \mathrm{~s}, 1079 \mathrm{~m}$ and $899 \mathrm{w} ; \delta_{\mathrm{H}} 0.88(3 \mathrm{H}, \mathrm{t}, \mathrm{J} 7.43, \mathrm{M} \mathrm{e}), 1.39(3 \mathrm{H}$, $\mathrm{s}, \mathrm{M} \mathrm{e}), 1.77\left(2 \mathrm{H}, \mathrm{q}, \mathrm{J} 7.43, \mathrm{CH}_{2}\right), 3.22(3 \mathrm{H}, \mathrm{s}, \mathrm{OM}$ e), $3.77(3 \mathrm{H}$, $\mathrm{s}, \mathrm{CO}_{2} \mathrm{M} \mathrm{e}$) and $6.00(1 \mathrm{H}, \mathrm{s},=\mathrm{CH})$; m/z 216 (M^{+}, absent), 184 (<0.5\%), 169 (4), 156 (7), 155 (66), 141 (9), 140 (6), 125 (6), 112 (6), 97 (13), 83 (100), 81 (6), 79 (5), 69 (3), 67 (3), 65 (3), 59 (3) and 53 (17).
4-M ethyl hydrogen (Z)-2-(1-methoxycyclohexyl)but-2-enedioate 5c. Colourless oil (Found: C, 59.6; H, 7.3. $\mathrm{C}_{12} \mathrm{H}_{18} \mathrm{O}_{5}$ requires C, 59.5; H, 7.4\%); $v_{\max }($ film $) / \mathrm{cm}^{-1} 3600-2800 \mathrm{~m}$ br, $2940 \mathrm{~s}, 1732 \mathrm{~s}, 1645 \mathrm{~m}, 1437 \mathrm{~m}, 1324 \mathrm{~m}, 1198 \mathrm{~s}$ and $1072 \mathrm{~m} ; \delta_{\mathrm{H}} 1.15-$
$2.07\left(10 \mathrm{H}, \mathrm{m}, 5 \mathrm{CH}_{2}\right), 3.19\left(3 \mathrm{H}, \mathrm{s}, \mathrm{OM}\right.$ e), $3.76\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CO}_{2} \mathrm{M} \mathrm{e}\right)$ and $6.00(1 \mathrm{H}, \mathrm{s},=\mathrm{CH}) ; \mathrm{m} / \mathrm{z} 242$ (${ }^{+}$, absent), 210 (4%), 195 (3), $180(36), 167$ (100), 166 (91), 154 (28), 153 (54), 152 (40), 151 (45), 139 (54), 137 (39), 135 (13), 123 (29), 121 (15), 110 (28), 109 (58), 105 (31), 95 (82), 91 (26), 82 (30), 81 (27), 79 (35), 77 (33), 69 (24), 67 (20), 65 (24), 59 (4), 55 (31) and 53 (51).

5,5-D imethox y-3-(1-hydroxy-1-methylethyl)-1-oxacyclopent-3-en-2-one 6a. Colourless oil (Found: C, 53.6; H, 6.8. C ${ }_{9} \mathrm{H}_{14} \mathrm{O}_{5}$ requires C, 53.5 ; H, 6.9\%); $v_{\text {max }}$ (film)/ $\mathrm{cm}^{-1} 3450 \mathrm{~m} \mathrm{br}, 2954 \mathrm{~s}$, 2927s, $2850 \mathrm{~m}, 1773 \mathrm{~s}, 1633 \mathrm{w}, 1463 \mathrm{~m}, 1365 \mathrm{~m}, 1303 \mathrm{~s}, 1195 \mathrm{~s}$, 1181s, 1139s, 1080m, 1001s, 937s, 880w, 835w, 791w and 737w; $\delta_{\mathrm{H}} 1.53(6 \mathrm{H}, \mathrm{s}, 2 \mathrm{Me}), 3.44(6 \mathrm{H}, \mathrm{s}, 2 \mathrm{OMe}$) and $6.72(1 \mathrm{H}, \mathrm{s}$, $=$ CH); m/z 202 (${ }^{+}$, absent), 187 (17%), 171 (21), 159 (3), 155 (17), 153 (28), 143 (11), 139 (11), 127 (12), 113 (36), 111 (16), 99 (100), 85 (15), 83 (15), 69 (20), 59 (53) and 53 (18).

5,5-D ibutoxy-3-(1-hydrox y-1-methylethyl)-1-ox acyclopent-3-en-2-one 6e. Colourless oil (Found: C, 62.7; H, 9.0. C $\mathrm{C}_{15} \mathrm{H}_{26} \mathrm{O}_{5}$ requires C, 62.9; H, 9.1\%); $v_{\text {max }}($ film $) / \mathrm{cm}^{-1} 3521 \mathrm{~m}$ br, 2961s, 2935m, 2875w, 1771s, 1462m, 1287s, 1173s and 733m; $\delta_{\mathrm{H}} 0.92$ ($6 \mathrm{H}, \mathrm{t}, \mathrm{J} 7.36,2 \mathrm{M} \mathrm{e}$), 1.30-1.50 ($4 \mathrm{H}, \mathrm{m}, 2 \mathrm{CH}_{2}$), 1.50-1.77 (4 $\mathrm{H}, \mathrm{m}, 2 \mathrm{CH}_{2}$), $1.53(6 \mathrm{H}, \mathrm{s}, 2 \mathrm{Me}), 3.54-3.75(4 \mathrm{H}, \mathrm{m}, 2$ $\mathrm{CH}_{2} \mathrm{OC}=0$) and 6.72 ($1 \mathrm{H}, \mathrm{s},=\mathrm{CH}$); m/z 286 (${ }^{+}$, absent), 271 (3\%), 229 (1), 213 (32), 183 (5), 157 (46), 141 (28), 139 (100), 127 (22), 124 (7), 113 (25), 111 (36), 99 (8), 95 (8), 83 (16), 59 (17), 57 (39) and 55 (12).

5,5-D imethoxy-3-(1-hydroxyethyl)-1-ox acyclopent-3-en-2-one 6 . This compound was obtained as a $3: 7$ mixture with $\mathbf{3 f}$. Signals reported here refer to 6 fonly; $v_{\text {max }}$ (film)/ $/ \mathrm{cm}^{-1} 1776 \mathrm{~s} ; \delta_{\mathrm{H}} 1.46$ ($3 \mathrm{H}, \mathrm{d}, \mathrm{J} 6.60, \mathrm{Me}$), $3.44(6 \mathrm{H}, \mathrm{s}, 20 \mathrm{Me}$), $4.67(1 \mathrm{H}, \mathrm{qd}, \mathrm{J} 6.60$ and 1.60, CHOH) and $6.86(1 \mathrm{H}, \mathrm{d}, \mathrm{J} 1.60,=\mathrm{CH}) ; \mathrm{m} / \mathrm{z} 188(\mathrm{M}+$ absent), 173 (5\%), 157 (41), 141 (8), 129 (16), 115 (10), 113 (11), 110 (6), 99 (100), 97 (30), 91 (4), 85 (10), 82 (7), 71 (10), 69 (21), 59 (29), 55 (25) and 53 (28).

Dibutyl (Z)-2-(1-butoxy-1-methylethyl)but-2-enedioate 7e. Colourless oil (Found: C, 66.8; H, 10.0. $\mathrm{C}_{19} \mathrm{H}_{34} \mathrm{O}_{5}$ requires C 66.7 ; H, 9.9%); $v_{\max }(\mathrm{film}) / \mathrm{cm}^{-1} 2959 \mathrm{~s}, 2934 \mathrm{~m}, 2873 \mathrm{~m}, 1731 \mathrm{~s}$, 1645w, 1465m, 1383m, 1338m, 1249m, 1171s, 1071m, 1037w and $735 \mathrm{~m} ; \delta_{\mathrm{H}} 0.91(3 \mathrm{H}, \mathrm{t}, \mathrm{J} 7.20, \mathrm{Me}), 0.93(3 \mathrm{H}, \mathrm{t}, \mathrm{J} 7.23, \mathrm{Me})$, 0.95 ($3 \mathrm{H}, \mathrm{t}, \mathrm{J} 7.21, \mathrm{M} \mathrm{e}$), 1.30-1.75 ($12 \mathrm{H}, \mathrm{m}, 3 \mathrm{CH}_{2} \mathrm{CH}_{2}$), 1.41 ($6 \mathrm{H}, \mathrm{s}, 2 \mathrm{Me}$), $3.34\left(2 \mathrm{H}, \mathrm{t}, \mathrm{J} 6.78, \mathrm{CH}_{2} \mathrm{O}\right.$), $4.12(2 \mathrm{H}, \mathrm{tJ} 6.70$, $\left.\mathrm{CH}_{2} \mathrm{OC}=0\right), 4.24\left(2 \mathrm{H}, \mathrm{t}, \mathrm{J} 6.78, \mathrm{CH}_{2} \mathrm{OC}=0\right)$ and $5.97(1 \mathrm{H}, \mathrm{s}$, $=$ CH); m/z 342 (${ }^{+}$, absent), 327 (3\%), 271 (2), 253 (2), 241 (2) 218 (8), 197 (12), 196 (22), 195 (10), 185 (3), 156 (6), 141 (70), 140 (100), 139 (49), 129 (3), 115 (15), 113 (8), 112 (22), 111 (25), 83 (14), 67 (7), 59 (49), 57 (39) and 55 (10).
4-M ethyl hydrogen (Z)-2-(1-hydroxycyclohexyl)but-2-enedioate 8c. Colourless oil (Found: C, 58.0; H, 7.1. $\mathrm{C}_{11} \mathrm{H}_{16} \mathrm{O}_{5}$ requires C, 57.9; H, 7.0\%); $v_{\max }($ film $) / \mathrm{cm}^{-1} 3600-2800 \mathrm{~m}$, br, 2940s, 1732s, $1607 \mathrm{~m}, 1437 \mathrm{~m}, 1260 \mathrm{~s}$ and 1172s; $\delta_{\mathrm{H}} 1.15-2.07$ ($10 \mathrm{H}, \mathrm{m}, 5 \mathrm{CH}_{2}$), $3.76\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CO}_{2} \mathrm{M} \mathrm{e}\right.$) and $5.77(1 \mathrm{H}, \mathrm{s},=\mathrm{CH})$; m/z 228 (${ }^{+}$, absent), 178 (77\%), 150 (64), 149 (24), 135 (11), 132 (47), 131 (21), 122 (33), 105 (100), 104 (37), 103 (24), 94 (19), 91 (67), 79 (45), 78 (57), 77 (40), 65 (21), 63 (23) and 53 (14).

D imethyl (E)-2-(1-methoxyethyl)but-2-enedioate 10f. Colourless oil (Found: C, 53.4; H, 6.9. $\mathrm{C}_{9} \mathrm{H}_{14} \mathrm{O}_{5}$ requires $\mathrm{C}, 53.5 ; \mathrm{H}$, $6.9 \%) ; v_{\text {max }}($ film $) / \mathrm{cm}^{-1} 2986 \mathrm{w}, 2954 \mathrm{~m}, 1725 \mathrm{~s}, 1651 \mathrm{w}, 1436 \mathrm{~m}$, $1364 \mathrm{w}, 1258 \mathrm{~s}, 1216 \mathrm{~s}, 1119 \mathrm{~m}, 1010 \mathrm{~m}, 898 \mathrm{w}$ and $867 \mathrm{w} ; \delta_{\mathrm{H}} 1.49$ ($3 \mathrm{H}, \mathrm{d}, \mathrm{J} 6.60, \mathrm{Me}$), 3.27 ($3 \mathrm{H}, \mathrm{s}, \mathrm{OM}$ e), 3.78 ($3 \mathrm{H}, \mathrm{s}, \mathrm{CO}_{2} \mathrm{Me}$), $3.82\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CO}_{2} \mathrm{M} \mathrm{e}\right.$), $4.81(1 \mathrm{H}, \mathrm{qd}, \mathrm{J} 6.60$ and $0.60, \mathrm{CHOMe})$ and $6.63(1 \mathrm{H}, \mathrm{d}, \mathrm{J} 0.60,=\mathrm{CH})$; m/z 202 (M^{+}, absent), 187 (12%), 171 (29), 170 (100), 159 (7), 155 (13), 142 (19), 139 (25), 127 (15), 123 (5), 113 (21), 112 (36), 111 (19), 97 (11), 83 (74), 75 (43), 69 (12), 59 (69) and 53 (32).

4-(M ethoxycarbonyl)-5-methyl-1-oxacyclopent-3-en-2-one

11f. Colourless oil (Found: C, 53.7; $\mathrm{H}, 5.2 . \mathrm{C}_{7} \mathrm{H}_{8} \mathrm{O}_{4}$ requires C , 53.8; H, 5.1\%); $v_{\max }($ film $) / \mathrm{cm}^{-1} 2992 \mathrm{w}, 2958 \mathrm{~m}, 1774 \mathrm{~s}, 1730 \mathrm{~s}$, $1635 \mathrm{w}, 1439 \mathrm{~m}, 1358 \mathrm{~m}, 1300 \mathrm{~m}, 1233 \mathrm{~s}, 1163 \mathrm{~m}, 1060 \mathrm{~m}, 960 \mathrm{~m}$ and 766 m ; $\delta_{\mathrm{H}} 1.59(3 \mathrm{H}, \mathrm{dd}, \mathrm{J} 6.75$ and $0.24, \mathrm{Me}), 3.91(3 \mathrm{H}, \mathrm{s}$, $\left.\mathrm{CO}_{2} \mathrm{M} \mathrm{e}\right), 5.29(1 \mathrm{H}, \mathrm{qd}, \mathrm{J} 6.75$ and $1.94, \mathrm{CHOC=O})$ and 6.67 (1 H, dq, J 1.94 and $0.24,=C H$); m/z $156\left(\mathrm{M}^{+}, 3 \%\right), 141$ (23), 127
(6), 125 (23), 124 (11), 114 (100), 113 (49), 99 (6), 97 (7), 85 (12), 82 (17), 69 (9), 59 (25) and 53 (66).

3-[(Z)-M ethoxycarbonyl)methylene\} 1-oxacyclopentan-2-one 13g. Colourless oil (Found: C, 53.7; H,5.2. $\mathrm{C}_{7} \mathrm{H}_{8} \mathrm{O}_{4}$ requires C, 53.8; H, 5.1\%); $v_{\text {max }}($ film $) / \mathrm{cm}^{-1} 2995 \mathrm{~m}, 2955 \mathrm{~m}, 2927 \mathrm{w}, 1763 \mathrm{~s}$, $1735 \mathrm{~s}, 1677 \mathrm{~m}, 1435 \mathrm{~m}, 1377 \mathrm{~m}, 1335 \mathrm{~m}, 1259 \mathrm{~s}, 1183 \mathrm{~s}, 1102 \mathrm{~m}$, $1009 \mathrm{~s}, 959 \mathrm{w}$ and $898 \mathrm{~m} ; \delta_{\mathrm{H}} 3.06(2 \mathrm{H}, \mathrm{td}, \mathrm{J} 7.17$ and 2.64 , $\left.\mathrm{CH}_{2} \mathrm{C}=\right), 3.83\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CO}_{2} \mathrm{M} \mathrm{e}\right.$), $4.42\left(2 \mathrm{H}, \mathrm{t}, \mathrm{J} 7.17, \mathrm{CH}_{2} \mathrm{OC}=\mathrm{O}\right)$ and 6.38 ($1 \mathrm{H}, \mathrm{t}, \mathrm{J} 2.64,=\mathrm{CH}$); m/z 156 (${ }^{+}, 2 \%$), 127 (33), 125 (100), 124 (99), 112 (44), 99 (24), 97 (62), 96 (54), 82 (35), 81 (19), 69 (84), 68 (20), 59 (94), 55 (12) and 53 (55).

3-[(Z)-(M ethoxycarbonyl)methylene]-5-methyl-1-oxacyclo-pentan-2-one 13h. Colourless oil (Found: C, 56.4; H, 6.0. $\mathrm{C}_{8} \mathrm{H}_{10} \mathrm{O}_{4}$ requires C, 56.5; H, 5.9\%); $v_{\text {max }}($ film $) / \mathrm{cm}^{-1} 2981 \mathrm{~m}$, $2954 \mathrm{~m}, 1761 \mathrm{~s}, 1735 \mathrm{~s}, 1677 \mathrm{~m}, 1435 \mathrm{~m}, 1387 \mathrm{~m}, 1343 \mathrm{~m}, 1261 \mathrm{~s}$, $1185 \mathrm{~s}, 1108 \mathrm{w}, 1083 \mathrm{~m}, 1040 \mathrm{w}, 1011 \mathrm{~m}$ and 947 w ; $\delta_{\mathrm{H}} 1.45$ (3H,d, J $6.29, \mathrm{M} \mathrm{e}$), 2.62 (1 H , distorted ddd, J $17.26,6.31$ and 2.84 , CH H), 3.15 (1 H , distorted ddd, J 17.26, 7.25 and 2.34, CHH), $3.83\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CO}_{2} \mathrm{Me}\right.$), 4.64-4.77 ($1 \mathrm{H}, \mathrm{m}, \mathrm{CHOC=O}$) and 6.316.35 ($1 \mathrm{H}, \mathrm{m},=\mathrm{CH}$); m/z 170 ($\mathrm{M}^{+},<0.5 \%$), 155 (5), 139 (34), 138 (28), 127 (47), 123 (12), 110 (100), 99 (33), 95 (15), 83 (13), 69 (21), 67 (23), 59 (37) and 53 (10).

4,4-D imethyl-3-[(Z)-methoxycarbonyl)methylene]-1-oxa-cyclopentan-2-one 13i. Colourless oil (Found: C, 58.6; H, 6.4. $\mathrm{C}_{9} \mathrm{H}_{12} \mathrm{O}_{4}$ requires $\mathrm{C}, 58.7 ; \mathrm{H}, 6.5 \%$); $v_{\text {max }}($ film $) / \mathrm{cm}^{-1} 2967 \mathrm{~m}$, 1760s, 1735s, 1669m, 1614w, 1463m, 1435m, 1367m, 1327m, $1267 \mathrm{~m}, 1224 \mathrm{~m}, 1141 \mathrm{~m}, 1053 \mathrm{~m}, 1012 \mathrm{~m}, 902 \mathrm{w}$ and 790 w ; $\delta_{\mathrm{H}} 1.31$ ($6 \mathrm{H}, \mathrm{s}, 2 \mathrm{M} \mathrm{e}$), $3.84\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CO}_{2} \mathrm{Me}\right.$ e), $4.08\left(2 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{2}\right)$ and 6.21 ($1 \mathrm{H}, \mathrm{s},=\mathrm{CH}$); m/z 184 (${ }^{+}+6 \%$), 169 (3), 154 (50), 153 (82), 152 (14), 140 (40), 139 (20), 127 (24), 126 (92), 125 (100), 124 (18), 111 (57), 97 (39), 96 (21), 95 (21), 94 (16), 83 (16), 81 (43), 79 (28), 67 (78), 66 (24), 65 (25), 59 (41), 55 (17) and 53 (66).

4-[(Z)-M ethoxycarbonyl)methylene]-cis-2-oxabicyclo[3.3.0]-octan-3-one 13j. White solid, $\mathrm{mp} 45-46^{\circ} \mathrm{C}$ (Found: $\mathrm{C}, 61.2 ; \mathrm{H}$, 6.1. $\mathrm{C}_{10} \mathrm{H}_{12} \mathrm{O}_{4}$ requires $\left.\mathrm{C}, 61.2 ; \mathrm{H}, 6.1 \%\right) ; v_{\max }(\mathrm{K} \mathrm{Br}) / \mathrm{cm}^{-1}$ $2977 \mathrm{~m}, 2961 \mathrm{~m}, 1753 \mathrm{~s}, 1723 \mathrm{~s}, 1669 \mathrm{~m}, 1431 \mathrm{~m}, 1369 \mathrm{~m}, 1329 \mathrm{~m}$, $1264 \mathrm{~m}, 1199 \mathrm{~m}, 1185 \mathrm{~m}, 1148 \mathrm{~m} 1096 \mathrm{~m}, 1034 \mathrm{~m}, 1013 \mathrm{~m}, ~ 913 \mathrm{w}$, 772 w and 650 w ; $\delta_{\mathrm{H}} 1.52-1.85(4 \mathrm{H}, \mathrm{m}$, ring $), 1.92-2.15(2 \mathrm{H}, \mathrm{m}$, ring), 3.41-3.51(1H , m, 5-H), 3.84 (3H , s, CO $\mathrm{CO}_{2} \mathrm{Me}$), 4.98-5.06(1 H, m, 1-H) and 6.33 ($1 \mathrm{H}, \mathrm{d}, \mathrm{J} 2.25,=\mathrm{CH}$); m/z 196 ($\mathrm{M}^{+}, 15 \%$), 165 (81), 164 (27), 152 (37), 140 (100), 139 (42), 137 (65), 136 (74), 124 (18), 119 (17), 112 (15), 111 (25), 109 (44), 108 (70), 107 (33), 95 (31), 93 (25), 91 (47), 81 (53), 80 (49), 79 (80), 77 (36), 74 (14), 67 (36), 59 (50) and 53 (41).

4-[(Z)-(M ethoxycarbonyl)methylene]-trans-2-ox abicyclo-

[3.3.0]octan-3-one 13k. White solid, mp $83-84^{\circ} \mathrm{C}$ (Found: C, 61.2; $\mathrm{H}, 6.2 . \mathrm{C}_{10} \mathrm{H}_{12} \mathrm{O}_{4}$ requires $\left.\mathrm{C}, 61.2 ; \mathrm{H}, 6.1 \%\right)$; $v_{\max }(\mathrm{K} \mathrm{Br}) /$ $\mathrm{cm}^{-1} 2991 \mathrm{w}, 2959 \mathrm{w}, 1767 \mathrm{~s}, 1730 \mathrm{~s}, 1679 \mathrm{~m}, 1435 \mathrm{~m}, 1306 \mathrm{~m}, 1259 \mathrm{~s}$, $1175 \mathrm{~m}, 1136 \mathrm{~m}, 1115 \mathrm{~m}, 1055 \mathrm{w}, 1006 \mathrm{~m}, 939 \mathrm{w}$, 910w and 882 w ; δ_{H} 1.43-1.80 ($2 \mathrm{H}, \mathrm{m}$, ring), 1.87-2.27 ($4 \mathrm{H}, \mathrm{m}$, ring), 2.69 (1 H , tdd, J 11.61, 6.25 and 3.14, 5-H), 3.78-3.90 ($1 \mathrm{H}, \mathrm{m}, 1-\mathrm{H}$), 3.82 ($3 \mathrm{H}, \mathrm{s}, \mathrm{CO}_{2} \mathrm{M} \mathrm{e}$) and $6.10(1 \mathrm{H}, \mathrm{d}, \mathrm{J} 3.14,=\mathrm{CH}) ; \mathrm{m} / \mathrm{z} 196\left(\mathrm{M}^{+}\right.$, $6 \%), 165$ (19), 164 (17), 150 (15), 140 (32), 137 (17), 136 (100), 112 (40), 109 (16), 108 (21), 91 (19), 81 (29), 79 (23), 77 (14), 65 (10), 59 (18) and 53 (28).

Dimethyl (Z)-2-(2-hydroxyethyl)but-2-enedioate 14g. Colourless oil (Found: C, 51.0; $\mathrm{H}, 6.5 . \mathrm{C}_{8} \mathrm{H}_{12} \mathrm{O}_{5}$ requires $\mathrm{C}, 51.1 ; \mathrm{H}$, 6.4%); $v_{\text {max }}$ (film)/ $\mathrm{cm}^{-1} 3435 \mathrm{~m}$ br, 2955m, 2888w, 1737s, 1650 m , $1437 \mathrm{~m}, 1371 \mathrm{~m}, 1275 \mathrm{~s}, 1205 \mathrm{~s}, 1172 \mathrm{~s}, 1123 \mathrm{w}, 1045 \mathrm{~m}, 974 \mathrm{w}$ and $756 \mathrm{w} ; \delta_{\mathrm{H}} 2.59\left(2 \mathrm{H}, \mathrm{td}, \mathrm{J} 6.12\right.$ and $\left.1.23, \mathrm{CH}_{2}\right), 3.73(3 \mathrm{H}, \mathrm{s}$, $\mathrm{CO}_{2} \mathrm{Me}$), $3.79\left(2 \mathrm{H}, \mathrm{t}, \mathrm{J} 6.12, \mathrm{CH}_{2} \mathrm{OH}\right), 3.84\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CO}_{2} \mathrm{M} \mathrm{e}\right)$ and $5.97(1 \mathrm{H}, \mathrm{t}, \mathrm{J} 1.23,=\mathrm{CH})$; m/z 188 (M^{+}, absent), 157 (14%), 126 (100), 125 (32), 99 (14), 98 (43), 69 (34), 68 (39), 67 (19), 59 (40) and 53 (15).

Dimethyl (Z)-2-(2-hydroxypropyl)but-2-enedioate 14h. Colourless oil (Found: C, 53.4; $\mathrm{H}, 6.8 . \mathrm{C}_{9} \mathrm{H}_{14} \mathrm{O}_{5}$ requires $\mathrm{C}, 53.5 ; \mathrm{H}$, $6.9 \%) ; v_{\text {max }}($ film $) / \mathrm{cm}^{-1} 3443 \mathrm{~m}$ br, 2995m, 1725s, 1649 m , $1437 \mathrm{~m}, 1373 \mathrm{~m}, 1273 \mathrm{~s}, 1202 \mathrm{~s}, 1172 \mathrm{~s}, 1129 \mathrm{~m}, 1082 \mathrm{w}, 1015 \mathrm{w}$, $972 \mathrm{w}, 943 \mathrm{w}$ and 843 w ; $\delta_{\mathrm{H}} 1.25(3 \mathrm{H}, \mathrm{d}, \mathrm{J} 6.21, \mathrm{M} \mathrm{e}), 2.43(1 \mathrm{H}$, distorted ddd, J 14.07, 8.41 and $1.05, \mathrm{CHH}$), 2.53 (1 H , dis-
torted ddd, J $14.07,4.12$ and $1.39, \mathrm{CHH}), 3.74\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CO}_{2} \mathrm{M} \mathrm{e}\right)$, $3.85\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CO}_{2} \mathrm{M} \mathrm{e}\right), 3.93-4.11(1 \mathrm{H}, \mathrm{m}, \mathrm{CHOH})$ and $5.92-5.96$ (1 H, m, =CH); m/z 202 (${ }^{+}$, absent), 187 ($<0.5 \%$), 171 (3), 158 (5), 139 (12), 127 (20), 126 (100), 99 (11), 98 (39), 69 (20), 68 (30), 67 (15), 59 (26) and 53 (6).

D imethyl (Z)-2-[trans-(2-hydroxycyclopentyl)]but-2-enedioate 14k. Colourless oil (Found: C, 58.1; H,7.0. $\mathrm{C}_{11} \mathrm{H}_{16} \mathrm{O}_{5}$ requires C, $57.9 ; \mathrm{H}, 7.0 \%$); $v_{\text {max }}($ film $) / \mathrm{cm}^{-1} 3439 \mathrm{~m}$, br, 2954s, 2877 w , $1718 \mathrm{~s}, 1644 \mathrm{~m}, 1437 \mathrm{~m}, 1378 \mathrm{~m}, 1271 \mathrm{~s}, 1201 \mathrm{~s}, 1171 \mathrm{~s}, 1019 \mathrm{~m}$ 975w, 873w and 756m; $\delta_{\mathrm{H}} 1.53-1.87$ ($4 \mathrm{H}, \mathrm{m}$, ring), 1.90-2.10 ($2 \mathrm{H}, \mathrm{m}$, ring), 2.56-2.73 ($1 \mathrm{H}, \mathrm{m}, \mathrm{CHC=}$), $3.72\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CO}_{2} \mathrm{Me}\right.$), $3.84\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CO}_{2} \mathrm{M} \mathrm{e}\right.$), 4.10-4.21(1 H, m, CHOH) and 5.90 ($1 \mathrm{H}, \mathrm{d}, \mathrm{J} 1.22,=\mathrm{CH}$); m/z 228 (${ }^{+}$, absent), 197 (12\%), 196 (24), 168 (22), 164 (16), 152 (48), 140 (100), 139 (41), 137 (79), 136 (50), 124 (23), 112 (18), 111 (28), 109 (61), 108 (36), 107 (16), 96 (16), 93 (13), 91 (18), 81 (53), 80 (28), 79 (49), 67 (20), 59 (74), 55 (22) and 53 (28).

M ethyl 4,4-dimethyl-5-hydroxypent-2-ynoate 15 i . C olourless oil (Found: C, 61.3; H, 7.8. $\mathrm{C}_{8} \mathrm{H}_{12} \mathrm{O}_{3}$ requires C, 61.5; $\mathrm{H}, 7.7 \%$); $v_{\text {max }}($ film $) / \mathrm{cm}^{-1} 3443 \mathrm{~m}$ br, 2972m, 2874w, 2235m, 1717s, $1436 \mathrm{~m}, 1295 \mathrm{~m}, 1261 \mathrm{~s}, 1061 \mathrm{~m}, 1028 \mathrm{~m}$ and $754 \mathrm{w} ; \delta_{\mathrm{H}} 1.27(6 \mathrm{H}, \mathrm{s}$, $2 \mathrm{Me}), 3.50\left(2 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{2}\right)$ and $3.77\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CO}_{2} \mathrm{M} \mathrm{e}\right) ; \mathrm{m} / \mathrm{z} 156$ (M ${ }^{+}$, absent), 155 (<0.5\%), 126 (100), 125 (63), 111 (44), 95 (21), 94 (97), 93 (18), 83 (25), 82 (20), 79 (42), 67 (74), 66 (25), 65 (23), 59 (16) and 53 (26).

4-[(E)(M ethoxycarbonyl)methylene]-trans-2-oxabicyclo-

[3.3.0]octan-3-one 16k. Colourless oil (Found: C, 61.0; H, 6.2 $\mathrm{C}_{10} \mathrm{H}_{12} \mathrm{O}_{4}$ requires $\mathrm{C}, 61.2 ; \mathrm{H}, 6.1 \%$); $v_{\max }($ film $) / \mathrm{cm}^{-1} 2957 \mathrm{w}$ $2922 \mathrm{~m}, 1781 \mathrm{~s}, 1730 \mathrm{~s}, 1437 \mathrm{~m}, 1343 \mathrm{w}, 1265 \mathrm{~s}, 1209 \mathrm{~m}, 1175 \mathrm{~m}, 1125 \mathrm{~m}$ $1052 \mathrm{~m}, 1015 \mathrm{~m}$ and $739 \mathrm{~s} ; \delta_{\mathrm{H}} 1.55-1.85$ ($2 \mathrm{H}, \mathrm{m}$, ring), $1.90-2.06$ ($1 \mathrm{H}, \mathrm{m}$, ring), 2.10-2.24 (2 H, m, ring), 2.25-2.45 ($1 \mathrm{H}, \mathrm{m}$, ring), 2.72-2.85 (1 H, m, 5-H), 3.76-3.93 (1 H, m, 1-H), 3.79 (3 H , s, $\mathrm{CO}_{2} \mathrm{M}$ e) and $6.68(1 \mathrm{H}, \mathrm{d}, \mathrm{J} 3.52,=\mathrm{CH})$; m/z $196\left(\mathrm{M}^{+},<0.5 \%\right)$, 165 (32), 164 (12), 152 (53), 140 (54), 139 (28), 137 (48), 136 (100), 124 (27), 120 (17), 113 (23), 112 (20), 111 (37), 109 (58), 108 (46), 107 (24), 97 (11), 96 (21), 91 (30), 81 (62), 80 (35), 79 (65), 77 (33), 67 (22), 65 (33), 59 (72), 55 (28) and 53 (46).

R eferences

1 (a) T. A. G eissman and M. A. Irwin, P ure Appl. Chem., 1970, 21, 167; (b) S. M. K upchan, P ure A ppl. Chem., 1970, 21, 227; (c) K.-H. Lee, C. Piantadosi, E.-S. H uang, J. S. Panago and T. A . Geissman, Cancer Res., 1971, 31, 1649; (d) A. Pommier and J. M. Pons, Synthesis, 1993, 441.
2 (a) T. F. M urray, E. G. Samsel, V. Varma and J. R . N orton, J. Am. Chem. Soc., 1981, 103, 7520; (b) J. R . N orton, K. E. Shenton and J. Schwartz, Tetrahedron Lett., 1975, 51; (c) E. Drent, P. H. M. Budzelaar and W. W. Jager, EP A ppl. 386 833/1990 (Chem. A bstr., 1991, 114, 142679z); (d) E. Drent, P. A rnoldy and P. H. M. Budzelaar, J. Organomet. C hem., 1993, 455, 247.
3 Y. Tamaru, M. Hojo and Z.-I. Yoshida, J. Org. Chem., 1991, 56, 1099.

4 (a) T. N ogi and J. Tsuji, Tetrahedron, 1969, 25, 4099; (b) J. Tsuji and T. N ogi, Tetrahedron Lett., 1966, 1801; (c) B. El Ali and H. A lper, J. Org. C hem., 1991, 56, 5357; (d) K .-T. H uh, A Orita and H. A lper, J. Org. Chem., 1993, 58, 6956; (e) K. M atsushita, T. K omori, S. Oi and Y. Inoue, Tetrahedron Lett., 1994, 35, 5889.
5 I. M atsuda, A. Ogiso and S. Sato, J. Am. Chem. Soc., 1990, 112, 6120.

6 B. Gabriele, M. Costa, G. Salerno and G. P. Chiusoli, J. Chem. Soc., C hem. Commun., 1994, 1429.
7 B. Gabriele, M. Costa, G. Salerno and G. P. Chiusoli, J. Chem. Soc., Perkin Trans. 1, 1994, 83.
8 (a) T. F. M urray and J. R. N orton, J. Am. Chem. Soc., 1979, 101, 4107; (b) T. F. M urray, V. Varma and J. R. N orton, J. A m. Chem. Soc., 1977, 99, 8087.
9 F. Calderazzo, A ngew. C hem., Int. E d. Engl., 1977, 16, 299
10 (a) B. Gabriele, G. Salerno, M. Costa and G. P. Chiusoli, J. Organomet. Chem., 1995, 503, 21 and references cited therein; (b) R . F. H eck, J. A m. C hem. Soc., 1972, 94, 2712.

11 P. G. Sammes and D. J. Weller, Synthesis, 1995, 1205 and references cited therein.
12 F. Barbot and P. M iginiac, J. Organomet. C hem., 1992, 440, 249.
13 M . M . M idland, J. Org. Chem., 1975, 40, 2250
14 J. Tsuji, T. Sugiura and I. M inami, Tetrahedron L ett., 1986, 27, 731.

Paper 6/03892A
Received 4th J une 1996
A ccepted 9th September 1996

